
File System Block-Mapping under Linux

Daniel Ridge, newt@scyld.com ; v1.0.17, 16 March 2000

The Linux kernel includes a powerful, �lesystem independant mechanism for mapping logical �les onto the sectors

they occupy on disk. While this interface is nominally available to allow the kernel to e�ciently retrieve disk pages

for open �les or running programs, an obscure user-space interface does exist. This is an interface which can be

handily subverted (with bmap and freinds) to perform a variety of functions interesting to the computer forensics

community, the computer security community, and the high-performance computing community.

1 Downloading

bmap is publicly available at the following location

� Web page: http://www.scyld.com/software/bmap.html

� Source: ftp://ftp.scyld.com/pub/bmap/bmap-1.0.17.tar.gz

1.1 Redistribution

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation; either version 2 of the License, or (at your

option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write

to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

2 Usage

The bmap package consists of 2 tools and a development library. The standalone tools bmap and slacker

are provided as both useful standalone utilities and reference implementations of libbmap applications.

2.1 Building bmap

make and make install should take care of it.

At this time, we have only worked out a bmap implementation on Linux.

These tools will install under /usr/local by default.

2.2 Invoking the tools

2.2.1 bmap invocation

bmap [<OPTIONS>] [<target-filename>]

2. Usage 2

Where OPTIONS may include any of:

�doc VALUE

where VALUE is one of:

version

display version and exit

help

display options and exit

man

generate man page and exit

sgml

generate SGML invocation info

�mode VALUE

where VALUE is one of:

map

list sector numbers

carve

extract a copy from the raw device

slack

display data in slack space

putslack

place data into slack

wipeslack

wipe slack

checkslack

test for slack (returns 0 if �le has slack)

slackbytes

print number of slack bytes available

wipe

wipe the �le from the raw device

frag

display fragmentation information for the �le

checkfrag

test for fragmentation (returns 0 if �le is fragmented)

�out�le <�lename>

write output to ...

�label

useless bogus option

�name

useless bogus option

2. Usage 3

�verbose

be verbose

�log-thresh <none | fatal | error | info | branch | progress | entryexit>

logging threshold ...

�target <�lename>

operate on ...

2.2.2 slacker invocation

slacker [<OPTIONS>] [<path-filename>]

Where OPTIONS may include any of:

�doc VALUE

where VALUE is one of:

version

display version and exit

help

display options and exit

man

display man and exit

sgml

generate SGML invokation info

�mode VALUE

where VALUE is one of:

capacity

measure slack capacity of path

�ll

�ll slack space with user data

frob

�ll slack space with random data

pour

write out the contents of slack space

wipe

clear the contents of slack space

�out�le <�lename>

write output to ...

�verbose

be verbose

�log-thresh <none | fatal | error | info | branch | progress | entryexit>

logging threshold ...

2. Usage 4

�path <�lename>

operate on ...

�recursive

descend into subdirectories

2.3 Limitations

The bmap works against �lesystems mounted on block devices. You will not to be able to operate against

�lesystems mounted via Samba, NFS, or any other network �lesystem.

If you simply cannot use bmap on the machine storing the block device or block device image, you can try

the linux network block driver to export the block device to the machine from which you wish to bmap.

Also, Scyld's userfs user-level �lesystem code includes a sample application, bush, which is linked against

bmap.

2.4 Technical Description / Implementation

2.4.1 VFS � Linux 'Virtual Filesystem Switch'

These notes are based on Linux 2.2.5 but should be widely portable to other versions of the Linux kernel.

compiled with

#include <linux/fs.h>

lives at

((struct inode_operations *)foo)->bmap

and is prototyped as

int foo_bmap(struct inode *inode,int block);

2.4.2 FIBMAP � userspace interface via ioctl

#include <sys/ioctl.h>

#include <linux/fs.h>

retval=ioctl(fd,FIBMAP,&block_pos);

Where block_pos passes the index of the block you wish to map and returns the index of that block with

respect to the underlying block device. It is important to understand exactly what these arguments expect

and what they return:

blocksize

stat() is is happy to provide callers with a blocksize value. This blocksize is often not the right one

for use with bmap. The stat() man page indicates that stat.st_blksize is for e�cient �lesystem

I/O. The blocksize suited for use with bmap is available via ioctl: ioctl(fd,FIGETBSZ,&block_size)

when performed against a �le descriptor returns the �le block size in bytes.

2. Usage 5

index of the block you wish to map

index is computed in units of blocksize per the above discussion. index is zero-based.

o�set of that block with respect to the underlying block device

index is computed in units of blocksize per the above discussion. index is zero-based. NOTE: This

o�set is against the start of the block device on which the �lesystem is mounted. This is usually a

partition � not the physical device on which the partition sits. Files with holes usually return 0 as

their block o�set for blocks that exist in the hole.

2.4.3 Device Determination;

bmap and slacker contain code that allows them to do I/O against the raw block device. Under linux, it

takes a bit of work just to determine where a �le is located. stat() returns the major/minor of the block

device via stat.st_dev � but this is di�cult information to use.

Three ways leap immediately to mind:

mknod

A new device node could be created somewhere with the major/minor numbers supplied by stat().

A serious downside is that a writeable volume must exist on the system in order for the device nodes

to be created.

walk /dev

This method can be done with an existing �lesystem, but the cost can be high. A /dev tree may feature

thousands of entries on a modern system and the target entry may be buried hundreds or thousands

of entries deep. This penalty could be extreme if the /dev tree were located on a remote system �

although this situation should be extremely rare.

maintain an internal mapping

This method is an attempt to speed up lookups in /dev by build-time precomputing a table with

major/minor and node names for many block devices. The target device is checked to determine that

the major/minor numbers are actually correct as a check.

bmap and freinds maintain an internal mapping for fast lookups. This saves measureable time when bmap is

invoked as the object of a �le-system walk over tens of thousands of �les. Currently, however, they do not

search or store this mapping very e�ciently.

2.5 Advanced Block Map Techniques

2.5.1 Undeleting �les (brute force)

1. Determine byte o�set of string with respect to beginning of block device containing �lesystem

2. Compute sector(s) containing string

3. Generate inode sector lists exhaustively over the �lesystem

find * -exec bmap {} >> /another_file_system/blocks \;

4. Sort lists from step (3) into a single list

cat /another_file_system/blocks | sort -n | uniq > > /another_file_system/blocks.sorted

2. Usage 6

5. Identify the contiguous set of unallocated sectors surrounding the sectors from step (4)

6. Extract the sector set identi�ed in step (5)

7. Done

2.5.2 Undeleting �les (openinode)

Scyld's openinode kernel patch relieves most of the complexity of 'undeleting' �les. However, a simple

postprocessing step is often useful when attempting to validate recovered �les � a check should be made to

determine if �le blocks from the recovered �le have been subsequently allocated to other �les.

1. Generate inode sector list for the recovered �le

2. Generate inode sector lists exhaustively over the �lesystem

find * -exec bmap {} >> /another_file_system/blocks \;

3. Sort lists from step (3) into a single list

cat /another_file_system/blocks | sort -n | uniq > > /another_file_system/blocks.sorted

4. See if any of the sectors reported for the recovered �le

5. Done

Unfortunately, lack of collisions is not enough to guarantee that a recovery is correct. Consider:

1. User tom creates a �le F(tom) containg the details of his baseball card collection. This results in the

creation of an inode I(tom) mapped into the inode space of the �lesystem and a vector of blocks V(tom)

containing �le data or metadata.

2. User tom deletes F(tom). Presuming that no other links to I(tom) exist, the �lesystem is now free to

reclaim (seperately) both the inode entry I(tom) and the blocks listed in V(tom).

3. User dick creates a �le F(dick) containing a great new picture of two midgets and a horse from

alt.rec.stepladders.and.livestock. This results in the creation of an inode I(dick) mapped into the inode

space of the �lesystem and a vector of blocks V(dick) containing �le data or metadata. Let us stipulate,

for the example, that V(dick) exactly equals V(tom) � which is to say that the picture of midgets now

occupies the blocks previously dedicated to the baseball cards.

4. At this point, V(dick) may contain blocks reclaimed from V(tom). This does not imply that I(dick)

is mapped into the �lesystem on the same inode number as I(tom). We can detect this block reuse

when recovering F(tom) by exhaustively comparing the elements of V(tom) against the elements of

every other V() associated with every other I() in the �lesystem � we would learn that V(dick) contains

blocks reclaimed from V(tom). Obviously, we must regard at least portions of F(tom) as unrecoverable

if its blocks have been recycled!

5. User dick deletes F(dick). Presuming that no other links to I(dick) exist, the �lesystem is now free to

reclaim (seperately) both the inode entry I(dick) and the blocks listed in V(dick).

6. At this point, a simple validation pass (as per above) would fail to reveal that V(tom) was reused as

V(dick) because F(dick) has been removed. If we had failed to consider this point (as analysts surely

have) we might have already �red tom from his job J(tom) for the midget picture! Perhaps we could

increase the sophistication of the validation pass to survey every V() associated with every inode in the

inode space � we could maybe see that a �le,F(dick), was created after F(tom) and contained blocks

reclaimed from V(tom).

3. Credits 7

7. The waters muddy further when user harry creates a �le F(harry) containg his Christmas shopping

list. This results in the creation of an inode I(harry) mapped into the inode space of the �lesystem

and a vector of blocks V(harry) containing �le data or metadata. Let us stipulate, for the example,

that I(harry) is mapped onto the same inode number that I(dick) was mapped onto.

8. At this point, we are still tempted to believe that our recovered F(tom) contains a picture of midgets

; further that tom was deliberately hiding his pictures under a fake name. Unlike previous steps where

a mechanism existed for determining that elements of V(tom) had been reallocated, every record of

F(dick) � namely I(dick) and V(dick) � has been obliterated.

While that situation sounds dire, there may still be hope for tom before he's (wrongly) sent o� to jail for

child pornography. Modern journalling �lesystems may contain extra information that allows us to exactly

determine whether tom's original �le is recoverable.

2.6 Library Interface

#include <bmap.h>

extern int bmap_get_slack_block(

int fd,

long *slack_block,

long *slack_bytes,

long *block_size);

extern int bmap_get_block_size(int fd);

extern int bmap_get_block_count(

int fd,

const struct stat *statval);

extern int bmap_map_block(int fd,unsigned long block);

extern int bmap_raw_open(

const char *filename,

mode_t mode);

extern void bmap_raw_close(int fd);

3 Credits

I would like to thank the NASA O�ce of Inspector General for having the special needs that caused me to

write this utility in the �rst place.

I would like to thank Bob Hergert of the Defense Computer Forensics Lab for developing the xscale com-

panion utility and for testing this product.

I would like to thank the FBI SWG-DE (Scienti�c Working Group on Digital Evidence) for working to

establish and promulgate guidelines that make it feasable to apply high-performance computing techniques

to the computer forensics process.

